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A calculating method is presented that takes into consideration the formation of a boundary layer at 
the interface between the adhesive and substrate. The structure and properties of this layer differ from 
those of the adhesive and the substrate. The method is applied to predict the performance of the 
adhesive lap shear joint and the results of the model are compared with the experimental data. 

KEY WORDS Adhesives, shear strength, lap joint, theoretical model, boundary layer model. 

INTRODUCTION 

In a previous study,' we presented evidence that the adhesives (paints, coatings, 
etc.) develop boundary layers whose structure and properties differ from the struc- 
ture and properties of the rest of the adhesives. It has also been shown that many 
effects contribute to the formulation of the boundary layer, which, in turn, has a 
significant effect on the performance of the adhesive joint. In this article, we 
describe an attempt to analyze and predict the adhesive joint performance by means 

*To whom all inquiries should be addressed. P.O. Box 8303, Radnor, PA 19087. 
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In the calculations, we assume that there is an intermediate layer of undefined 
thickness and properties which are different from those of the adhesive and sub- 
strate. 

The principles and the results of this “boundary method” will be presented for 
the “lap joint” used to determine the shear strength of the joint. 

Let us consider one-dimensional model of composite or adhesive joint consisting 
of m + 1 = 1 + n/2 of glued plates (bars) with the height ho, h,, . . . , hZm, of 
m adhesive layers with the height h , ,  h,, . . . , h2,,-, and of n boundary layers 
h:,  h:, . . . , A:. 

Outer forces P are applied to end faces of edge bars 0 and rn (see Figure 1). I n  

4 g  

FIGURE 1 
problem). 

-dimensional 

FIGURE 2 Shifts in system elements. 
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BOUNDARY LAYERS IN ADHESIVE JOINTS: PART I1 45 

such one-dimensional model the probable stress change over the height of each 
layer is not considered. It is assumed, that stresses within any layer are uniformly 
distributed over its height and they depend only on longitudinal “x” coordinate. 
In a one-dimensional treatment only tangential stresses T,, T ~ ,  . . . , T, are consid- 
ered in boundary layers (Figure 1). Boundary layer medium is modelled by a certain 
anysotropic medium, Young’s modulus of which in X direction tends to OE,, -+ 0. 
Such medium can be visualized as a set of thin, elastic, short small bars, perpen- 
dicular to boundary surface and not touching one another. Such medium can also 
experience normal stresses ay, but in this one-dimensional shear analysis they can 
be disregarded. 

Consider the general case of glued substrates and adhesive layers. There, si- 
multaneously with elastic deformations lk additional deformations can develop such 
as: reversible viscous-elastic deformations E:, irreversible or plastic deformations 
E:, temperature strain ctk ,  shrinking deformations E , ~  (as result of phase transfor- 
mation or chemical reaction), humidity deformations Ehk etc. If these deformations 
are small, the full deformation can be presented in the form of the sum of all the 
deformations mentioned. 

Here we do not take into consideration the deformations E: and E:, and the only 
elastic deformations in boundary layers will be always taken into account. In ad- 
dition, we will limit the considerations to uniform distribution of temperature and 
moisture content in layers. 

For temperature and humidity deformations we will use the known simple re- 
lationships 

and a summarizing deformation Eqk will be introduced, equal either to E , ~ ,  or to 
El&,  or to their sum ( k  = 0, 1, 2, . . . , n = 2m). 

In Figure 1, in the right part, the fragment of multilayer structure is presented, 
with length dx and with inner forces, acting in it, which are taken into consideration 
in one-dimensional problem. 

The condition of element balance dx of one-dimensional bar “k” with width of 
(k  = 0, 1, 2, . . . , n )  is the equality to zero of projections of all the forces, acting 
upon axis x :  

-Tkb dx - N k b  + T k + l b  dx + [ N k  + (dN, /dx)  dx]  = 0 

Hence we obtain differential equation of element equilibrium of “k” bar: 

In (2) Nk = u,khk is the force, acting upon the unity of model width, gA.k = 
normal stress. If tangential stresses are not applied to outer bar surfaces 0 and n,  
70 = T,,+ I = 0. 
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46 R.  A. TURUSOV, A.  S. FREIDIN AND V. N .  KESTELMAN 

The full deformation of “k” bar along x-axis consists of the elastic deformation 
and the summarized one E,,k: 

E,k = ek + &qk = NkI(hkEk) + € y k  ( 3 )  

It is connected by Koschi relationship with uh shift along the x-axis: 

E,k = dUk/dX (4) 

However, the V, shifts in all the layers in direction of y-axis can be considered 

As the thickness of boundary layer, performing the shear, is small it can be 
only as a function of y,  i.e. Vk = V,(y). 

considered, that uh dependence on thickness follows a linear law: 

u; = @k + bky 2 (h, + h,*) 5 y 5 2 (h, + h:) + hz; 
k -  I k - 1  

I = ( )  I = o  

h ,T=O,  k = 0 , 1 ,  . . . ,  n (5 )  

(6) 

Since Vz = Vz(y), the shear deformations in boundary layer, are: 

From (5)-(7) we obtain: 

€xy,k = (uk - uk-l)/hz (8) 

Shear deformations of elastic boundary layer are related to shear stresses T/,  by 
means of Hooke’s law: 

%y.k = ex-y,k = T k t G k  (9) 

From ( 3 ) ,  (4), (8) and (9) we obtain: 

d T k / d X  = (Gk/hE)[Nk/(Ekhk) - Nk-I(Ek-1hk-l) + E q k  - E,, .k- l ]  (10) 

Differentiating (2) and excluding derivatives of tangential stresses by means of 
(lo), we obtain system of equations for unknown functions N,(x): 
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BOUNDARY LAYERS IN ADHESIVE JOINTS: PART 11 47 

For layers 0 and n we obtain, respectively: 

Systems (11) and (12) contains II + 1 equation for finding n + 1 of unknown 
N , .  The computational solution of this system does not present principal difficulties. 
For particular case n + 1 of similar layers and n of boundary layers the solution 
is obtained in closed form as a superposition of exponents. 

In Figures 3a,b and 4a,b as an example, distribution curves of relative normal 
stresses are given in plates 0, 1,  2 and of tangential stresses-in boundary layers 
1 , 2  from the action only of shear forces P (see Figure 1) (Figure 3), and only from 
the action of temperature (Figure 4). It is the model of hybrid composite material, 
consisting of mono-layer of organic high-modulus fibres (brand SVM, analog to 

-40 -0,5 0 0,s’ 1,O 

3 -  

-1,o -0,s 0 0,s Z x / l  

FIGURE 3 
material under the influence of shear forces. 

Distribution of normal (a) and tangential (b) stresses in the model of hybride composite 

FIGURE 4 Distribution of normal temperature stresses (a) in substrate plates 0 and 2 and in adhesive 
layer I .  as well as of tangential temperature stresses in boundary layers h: ( 1 )  and h; (2); (h) V = 
T - T,,. 
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48 R. A .  TURUSOV, A. S. FREIDIN AND V. N. KESTELMAN 

USA-made Kevlar fibres, but with fibrillar structure)-layer 0; of mono-layer of 
glass fibres-layer 2; and of connecting layer of epoxy composition-layer 1. In the 
calculations, it was assumed that the boundary layer properties were identical. 
Calculations were carried out using the following geometrical and physical param- 
eters of the model: 

SVM:E( ,  = 1.2.10' MPa, h,, = 0.01 mm; a,() = 0 

glass fibre: 

epoxy resin: 

El  = 3*103 MPa, h ,  = 0.009 mm; atl = 8. llk; 

g = hT/Gl = h;/G2 = h*/G = lo4 MPa/mm; I = 20 mm, b = 1 mm 

( b  = width of specimen). 
The calculations show that normal tensile stresses u,,, in Figure 3a have in the 

middle layer two maxima near end faces. The presence of similar, but more strongly 
developed maxima, is found also in the solution of two-dimensional probleni of a 
simple reinforced polymer. In this case, the reinforcing element repre\cnt< the 
middle layer 1, and at its surface (layers 0 and 2 )  there is the polymer matrix. The 
existence of such maxima determines also the place of failure in this layer (or fiber). 

Regarding the temperature related stresses it should be noted that the two sub- 
strate layers (0 and 1) and the adhesive layer (1) contribute to their formation. 
The corresponding stress distribution, shown in Figure 4, is rather unusual and 
unexpected. For example, the distribution of tangential stresses in the boundary 
layer 1 (see Figure 4) changes its sign near the end faces, and the normal stresses 
in substrate 2 are everywhere compressive except near the end faces where they 
become tensile. 

In the solution of the problem considered, the tangential stresses in boundary 
layers 1 and 2 in corner points near end face at x = i f / 2 (<  = 2x11 = i 1) are not 
equal to zero, although no tangential stresses are applied from the outside. This 
is the consequence of the one-dimensional approximation. The accurate account 
of boundary conditions is possible only by means of two-dimensional problem. 

SHEAR IN LAP JOINT 

Turning to consideration of design and tests of plate lap joint, the scheme of which 
is shown in Figure 5 ,  we note that it is widely used for the determination of shear 
adhesive strength by glueing metal, wood, ceramic and other plates (USSR: GOST 
14759-69; USA: ASTMD 1002-64T, MIL-A-5090D, MIL-A-140X etc.). In this case 
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BOUNDARY LAYERS IN ADHESIVE JOINTS: PART I1 49 

n "i-=? & 
FIGURE 5 Variants of loading for plate lap joint 

the bars usually glued together 0 and 2 are identical. Therefore, in the formulas, 
of the previous section, given above, it should be taken: 

In this case, Equations (11) and (12) for loading variants I, 111, IV (see Figure 
5 )  will obtain the following form: 

For variant 11, the last equation has the form of No + NI + N ,  = 0, for variant 

Let us substitute N ,  from (12')3 into the first two equations, and then these 
IV, the P value changes for - P. 

equations will be summed up and subtracted. This leads to 

For variant I1 the first equation in ( 1 3 )  doesn't contain member with P/.  
The particular solution of inhomogeneous Equation ( 1 3 )  is as follows: 

The solutions of system ( 1 3 )  assumes the form: 

cp = A ,  sh W,x + B ,  ch W , X  + 9,; f = A, sh W,X + B, ch W,X. (16) 

We limit ourselves to the consideration of loading variant I ,  namely the shear 
of glued plates by means of tensile forces. 
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50 R .  A. TURUSOV, A. S. FREIDIN AND V. N. KESTELMAN 

In this case, the boundary conditions are: 

The solution of system (13): 

We present the final solutions for forces and stresses in the form of two types 
of residual stresses, those influenced by shrinkage and temperature and those 
created by applied outer forces f. 

ch W,x  sh W,x + k,) .~ - - No(x)  = uohO = Ff = 5 ( k o  + 2k, ch V ,  sh V,  k,, + 2k,  2 

k,, ch W,x sh W,x 
Nz(x) = U*h,) = - = - +- 

2 

k c )  sh W,x 
T ( x )  = -- = - .___ 

dx 26 ko + 2k ,  ch V ,  I 

( 1 - s )  

In Figure 6 we present the example of distribution of tangential stresses in 
boundary layers, for a lap joint. In the calculations we used the following values 
for parameters: g = 29600 MPa, I = 20 mm, E,, = 2.1O4 MPa, E l  = 6.107 MPa, 
h,, = h, = 2 mm, h ,  = 0.2 mm, aI = 8-1OPs l l k ;  a,, = l . l O - s  l l k ;  AT = 6 = 
- 100k; p12b = 59 Hlmm. 

Let us consider one of the most often encountered cases: adhesive hardening is 
carried out at high temperature. The stresses, which appear on hardening will be 
disregarded. Model tests are carried out at normal temperature in shear condition 
by tension. It means that 6 = AT = T - T,, < 0, and P > 0. Usually, polymer 
adhesive has coefficient of linear expansion, which is higher, than that of the 
substrate, i.e. a, > a,) and therefore (a, - a,,). 6 < 0.  
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75 

50 
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FIGURE 6 Distribution example of tangential stresses (formula 19) in lap joint. 

We put down T ~ ( x ) (  ), taking into consideration only temperature stresses: 

W,ko sh W,x ch W,x 
T 1 ( X )  = T l P ( X )  + T I T ( % )  = + w2-] sh V, 

W, sh W,x + (a, - ao) 6. ( - N2 I x 5 N2) (20) ko + 2k, ch V, 

To compare the solution (20) with experimental data of average adhesive strength, 
as a function of various experimental parameters, it is necessary to make certain 
analysis and transformation of the solution (20). 

The second item in square brackets (20) is positive for all values of X ,  the first 
one is positive only for x < 0. The temperature member is also positive for x < 
0. This means that T , ( x )  reaches maximum value at x = - N2, and T ~ ( x )  = T,(  - x)- 
at x = 1/2, i.e. where tensile forces P are applied. An example of tangential stress 
distribution T ~ ( x )  is presented in Figure 6. 

Now we postulate that model failure by shear takes place at the moment, when 
maximum value T , ( x )  reaches a certain critical vlue ( T J ,  which will be called the 
shear strength of adhesive bond of a given adhesive-substrate pair. However, ex- 
perimentally we determine the integral characteristics of the model, namely the 
average tangential stress. This stress equals the relation between the breaking load 
P ,  and glueing area 

By means of (20) we shall analyse the effects of geometrical and physical pa- 
rameters of the model and compare these results with experimental data obtained 
by means of Equation (21). For this purpose we determine T,,, = T , (  - 1/2) and 
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equate it with 7,“ and then express 7. Using the notation given in (13) and (18) we 
obtain 

(22) 
V, th V, 

f(kl, + 2k,) = ’ ( k o ~ k ~ k ,  th V, + V, cth V, 

And from (22) we obtain: 

DEPENDENCE OF 7 ON GLUE LINE LENGTH 

At constant width b = const, VI and V, in (23) increase linearly with the increase 
of length; the function of the V, increases smoothly from 0 up to 1 while I change 
from 0 up to x .  However, at the limit V,  cth V, = V, th V ,  and at I + 0 is equal 
to 1. Therefore, the limit of denominator in (23) at I --f 0 is equal to k,, + 2kl ,  
and at 1 + x it is equal to =. The corresponding limits of temperature member 
are equal to 0. Hence: 

lim ? = T,,,, lim 7 = 0 
1-0 &+x 

Thus, it follows from (23), that on the glue length change (or glueing area change) 
from zero up to infinity, the value of quantity 7 ,  measured experimentally, should 
decrease from T,,, up to zero. The last limit means, that beginning from a certain 
length, the breaking load P,, depends very weakly on the glue length (or area). 
The graph of showing the dependence of ;i on glue length, is given in Figure 7. 

Experimental curve 4 of ? dependence on glueing length is presented in Figure 
8 which is analogous to theoretical dependence in Figure 7. Experimental curve is 
obtained with multi-layer specimens like combs, inserted one into another in one 
plane, their tooth’s length changing. In such thin-layer specimens the possible 
bending of glued glass layers was practically eliminated. Thus, the failure of ad- 
hesive joints, resulting from the action of normal breaking stress was prevented. 

In  Figure 9 (curve 2), the same type of dependence is presented, for the steel 
substrate and epoxy adhesive. 

From the first limit (24) it is possible to estimate the “true” adhesive bond 
strength of a given adhesive-substrate pair, in complete agreement with its exper- 
imentally observed dependence on specimen geometry: 

= lim P,IS, 
s+o 

where S = the glueing area. 
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BOUNDARY LAYERS IN ADHESIVE JOINTS: PART I 1  53 

FIGURE 7 Theoretical curves of adhesive strength dependence in shear tests of lap joint on various 
parameters: 1 -on glueing length; 2,3--on adhesive layer thickness; 4-011 substrate rigidity; 5-9- 
on test temperature. 

DEPENDENCE OF 7 ON ADHESIVE LAYER THICKNESS 

The adhesive layer thickness consists of the boundary layer thickness h* and of 
the polymer layer thickness h , ,  i.e. h,q = 2h* + h, .  Thus, in the beginning, when 
h ,  = 0 ,  the increase of the thickness h,c takes place at the expense of an increase 
of the boundary layer thickness from zero up to certain limit h:,,znx. Then h ,  begins 
to increase from zero up to “infinity.” For h ,  = 0 the expression ( 2 3 )  assumes the 
simple form: 

It follows, that by changing of h* from zero up to h*,;,,, the quantity 7 increases 
from zero up to the final quantity Y k ,  which can be equal to T,‘, for low values of 
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PI K H  ?, MPa 

L 1 1 I 1  I I 1 
405 0,719 0,3 0,s 0,8 1 1,ZS h q , M U ( 1 )  

Experimental results of shear tests of plate lap joint FIGURE 8 

2, MPa 

I I I I I 
0 10 20 I ,  MU 

FIGURE 9 Experimental data on dependence of average adhesive strength by lap join 
epoxy adhesive K-115 on adhesive layer thickness ( 1 )  and on glueing length (2). 

shea 

V,. Then, while h ,  increases from zero up to “infinity,” 7 decreases from Y k  to 
given by 

as k, + 0 and V, -+ V,. 
If the temperature member in (23) ,  for some value of h , ,  is such, that numerator 

in (23) equals zero, the lower 7 limit will represent the zero-model failure resulting 
solely from temperature stresses, without the application of external force P. There- 
fore, two types of dependence o f ?  on h, are possible as shown in Figure 7.2 and 
7.3, of Reference 1. 

Figure 8 in which experimental results (curve 1) of dependence on h,, taken 
from Reference 2 are given, qualitatively confirms the validity of theoretical con- 
clusions for the example of steel bars glued with filled-in epoxy adhesive “Araldit.” 
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Curve 1 in Figure 9,  also shows the experimentally obtained dependence of 
average shear strength 7 of the adhesive joint of steel bars, glued with unfilled-in 
epoxy resin, on the adhesive layer thickness. Here, we were unable to reach the 
maximum, at a minimum thickness of 7.6 pm. But we know, that without an 
adhesive, the adhesive strength will be equal to zero. Therefore, it follows the 
maximum is at h:,, 5 3.8 x 

If we neglect the temperature effect in (23),  the limit of 7 at h,  -+ 03 (27) becomes 
m. 

The square brackets of denominator in (28) have a value which is higher than 1 
(but lower than 2). This means, that quantityT%i, in (28) is lower than 7 from 
(26) by h* = A*,,,. It means, that by increasing the adhesive layer thickness h,  (at 
constant h*,,,) the quantity 7 will decrease. Thus, the extremes in 7 dependence 
on h, can be explained not only by means of temperature (or shrinkage) stresses, 
but also by considering the boundary layer effects. 

.f DEPENDENCE ON SUBSTRATE RIGIDITY 

Substrate rigidity l /kO = EOh,, can be changed either by substrate thickness A,,, or 
by Young modulus Eo. We assume the other parameters of the model remain 
unchanged. By increasing E,,h,, from zero up “infinity,” the values V, and V, change 
in the range between 

Using the formula (23) we obtain the possible range o f ?  by changing Eoh, from 
zero up to infinity: 

The change of 7 with increase of E&,, obtained from (23) and (29), is given in 
Figure 7 (curve 4). 

The expression (29) indicates the possibility that average adhesive strength 7, 
determined in shear test of lap joint, can be higher than adhesive bond strength 
T,,,, (true strength) of given pair adhesive-substrate. This is very interesting and 
justifies further investigations. 
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DEPENDENCE OF 7 ON TESTING TEMPERATURE 

Considering, that the V ,  = cth V ,  = 1, when V ,  and V, are sufficiently high. This 
condition can be easily met by increasing the glueing length 1. Consequently we 
can modify (23) to yield 

(30) 
(011 - ~0)Wii 

( k , , N 2 ) ~  + v2v%---K 
+ - 7,d - 

(kOKw&(k( ,  + 2kl) + v, 
The model assumes that at a joint manufacturing temperature To, and there are 

no internal stresses. By changing the model temperature from To, the elasticity 
modulus of adhesive E ,  also changes. In Figure 10 the typical curves of Young 
modulus and of Poisson ratio change of epoxy and polyether polymers determined 
by acoustic method are presented.3 To simplify the analysis we assume that the 
elasticity modulus of substrate E,, and the rigidity parameter of the boundary layer 
g = G/h* do not depend on temperature. We also consider, that the “true” adhesive 
strength T,,,, is independent on temperature. 

When the model is “cooled” from the manufacturing temperature To, the mod- 
ulus El increases, as it can be seen in Figure 11. Simultaneously, the parameter k ,  
in (30) decreases and so does the parameter V , .  However, Vz remains unchanged, 
because it does not depend on k ,  (23).  This means, that denominator in  the first 
item T ( ’ )  in (30) increases slowly with decreasing T,  while 4’) decreases. The second 
item in (30), however, will increase with temperature decreasing from To. In 
summary, 

2 -  

-50 -25 0 25 50 75 (f4T 1,2, 

I I I 1 1 1 1 J  

T,’C 
-200 -150 -100 -50 0 50l fOl -  3) 

FIGURE 10 Experimental curves of dependence of Young’s modulus (full curves) E and of Poisson‘s 
ratio (dotted line) of epoxy polymers 6 E-60 (1) 6 EMAP (2) and of polyether resin PN-1 ( 3 ) .  The data 
from Reference 3 .  
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where arrow on the right shows decreases (downwards) or increases (upwards) of 
a function or parameter. 

In Figure 7, the curves 5-7 present the changes in T ( ' ) ,  d2) and 7 caused by 
decreasing temperature. 7 quantity, measured in the experiment, should be re- 
duced by temperature decrease from To. 

When the model is heated above To, the maximum of T Y )  (as it follows from 21) 
will remain for a certain time at X = -112. In this case, formulas (22), (23) and 
(30) remain valid. Thus, up to certain temperature T,;,, > To, T measured in the 
experiment continues to grow. But on further increases of Tcxpr the maximum T ~ ( x )  

can shift to x = +N2. In this case: 

Assuming again that model failure will take place, when T ~ ~ , ~ ~ ~  reaches T,(, / ,  it 
follows that 

And invoking that th V ,  = cth V,  = 1 ,  we obtain 

Both denominators in (33) are positive. With increasing temperature T,  the 
Young modulus decreases, k ,  increases, but k,, and V, remain essentially un- 
changed. Therefore, the radical in the denominator of the first term decreases while 
the radical in the denominator of the second term increases. Consequently, the 
first term slowly decreases with increasing temperature. It can also be deduced 
from the behavior of the numerator of the second term that it should increase with 
increasing temperature. 

4.5 I 

FIGURE I I 
expansion. 

Experimental curve of temperature dependence of the coefficient of polyethylene lincai 
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Since the rate of a ( T )  increases with increasing temperature (see Figure ll), it 
follows from (33) that at temperatures above To, 7 will start decreasing with in- 
creasing temperature at  a given T,,,,,. This is shown in Figure 7 by the solid curve. 
It should be noted that in this case we considered the failure to be in the boundary 
layer, namely an “adhesive” failure. We know, however, that the strength of 
polymeric adhesive is sharply reduced with increasing temperature. This trend leads 
to the situation where the joint is fractured before T , ~  is reached. In this latter 
case, the model predicts a “cohesive” failure that takes place within the adhesive 
layer and the maximum of 7 on T( T )  curve will shift to lower temperatures (see 
Figure 7-the dotted curve). 

The experimental data shown in Figure 9 confirm the validity of the theoretical 
temperature dependence of the lap shear adhesive joint strength (7). 

CONCLUSIONS 

In conclusion, it should be noted that the computations based on the boundary 
layer method presented in this study allowed us to explain all the available exper- 
imental results of the adhesive lap joint strength, regardless of the fact that we 
used a one-dimensional approximation. 

We have recently used this method to analyze and solve the problems concerning 
the performance of a number of adhesive joints, both in short- and long-term 
strength tests. In the latter case, we used non-linear relationship between stresses, 
deformations and time. Since, the boundary method proved to be very useful in 
all investigated cases, we are continuing this research to develop models that will 
cover all steps in the technological process of joint formation to their failure in 
short- and long-term exposure to external stresses. 

LIST OF SYMBOLS 

b = width 
e = elastic deformation 
E = Young modulus 
G = shear modulus 
h = height of glued plates and adhesive layers 

h* = height of boundary layers 
k = one dimensional bar 
I = length 

N = the force acting upon the units of model width 
P = outer (external) forces 

sh, ch, th, cth = sinh, cosh, tanh, ctanh 
T = temperature 

W = humidity 
Uk,  V,  = components of vector shift of k-plate 

x ,  y = axis 
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01 = coefficient of temperature linear expansion 
6 = AT = T - To - temperature difference 

e" = viscous-elastic deformations 
e! = plastic deformations 
E~,! = temperature strains 
eCk = shrinkage deformations 
elIk = humidity deformations 
u = normal stresses 
T = tangential stresses 

Literature 

1. R. A .  Turusov, A .  S. Freidin and V. N .  Kestelman. Inrern. J .  Polymeric Mater., (1995), article in 

2. B .  I .  Panshin, in "Adhesives and Clueing Technology," M. Oboronguis, p. 245-259. 1960. 
3 .  A .  Ya. Goldman and A. L. Rabinovitch. in "Physical Chemistry and Mechanics of Oriented Glass 

press. 

Plastics," Science, p. 124- 129. 1967. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
2
:
1
1
 
1
9
 
J
a
n
u
a
r
y
 
2
0
1
1


